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ABSTRACT  

This project explores the application of Satisfiability Modulo Theories (SMT) and 
Bounded Model Checking (BMC) in the context of AI planning. It particularly focuses on 
an AI-driven optimising taxi system within a simulated urban environment with 
intelligent agents (taxis). The intelligent agents (taxis) operate under various constraints 
such as dynamic obstacle management and traffic rules. The primary objective of the 
project is to ensure effective route planning, collision avoidance, optimisation of taxi 
operators, and traffic regulations compliance. 
 
The system implemented using the Python Programming language, integrates the Z3 
SMT solver to address complex logical constraints and implement BMC for formal 
verification of safety properties. Through a series of carefully designed experiments, the 
simulation evaluates the effectiveness, and efficiency of various route optimization 
algorithms such as A*, Depth-First Search, and Breadth-First Search. In addition, the 
experiments focus on collision avoidance, system scalability, traffic compliance, 
dynamic roadblocks and the performance of route optimization algorithms.  
 
The results reflect the effectiveness of integrating SMT and BMC in enhancing AI 
planning systems. Particularly for such a system, SMT and BMC are implemented to 
ensure the systems’ safety and reliability, in addition to providing insights into the 
efficiency, scalability, and robustness of urban transportation models. The findings 
highlight the importance of selecting appropriate planning algorithms based on 
environmental complexity and fleet size. This project contributes to the development of 
advanced and reliable automated planning/urban transportation systems by providing 
insights into the practical application of formal verification techniques in real-time, 
dynamic environments. 
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Introduction 
 
Artificial Intelligence (AI) has significantly advanced in recent years, leading to substan-
tial improvements in automated systems and intelligent decision-making processes. 
The increasing complexity of urban environments and demand for efficient transporta-
tion systems have driven significant advancements in AI planning and verification tech-
niques. Autonomous systems, such as self-driving taxis, are becoming integral compo-
nents of modern cities, requiring sophisticated algorithms to manage their operations 
effectively. Two main companies are known to be testing self-driving vehicles currently: 
Waymo owned by google and Cruise (approval granted in 2022) owned by General Mo-
tors in the United States, (The Taxi Centre, 2023). Both companies have established a 
fleet of fully automated, driverless vehicles currently being evaluated for their capability 
to safely pick up and drop off passengers within designated areas. Cruise’s operation 
consists of 30 electric vehicles within San Francisco operating between 10am and 6pm 
while Waymo’s operation is in testing phase in limited areas in Phoenix Arizona. 
 



The complexity of AI planning arises from the need to generate, optimize, and verify 
plans in dynamic and uncertain environments. This requires the development of sophis-
ticated algorithms with reasoning capabilities about the states and actions of the sys-
tem while considering various constraints such as time, resources and external factors. 
Through a series of experiments, this report evaluates the performance of different AI 
planning algorithms, including A*, Depth First Search, and Breadth-First Search, under 
different environmental conditions. The experiments test the system’s ability to avoid 
collisions, adapt to static obstacles, comply with traffic rules, and scale efficiently with 
increasing optional loads. Traditional planning methods provide foundational frame-
works; however, they are limited in handling the complexities of real-world scenarios 
which has led to the exploration of more advanced techniques that include Satisfiability 
Modulo Theories (SMT) and Bounded Model Checking (BMC). 
 
Researchers have in many cases turned to Satisfiability Modulo Theories (SMT) and 
Bounde Model Checking (BMC) to address these limitations. SMT extends the classical 
Boolean satisfiability problem (SAT) by incorporating theories that govern the behaviour 
of non-Boolean elements, such as real numbers, arrays, and integers. Such rich mathe-
matical theories allow for the expression of more complex and realistic constraints. 
BMC is a verification technique responsible for checking the correctness of models 
within a specified bounded number of steps. Due to BMC’s ability to provide counterex-
amples when properties are violated, this makes it a powerful tool for identifying poten-
tial issues in system designs. 
 
This report takes a shallow history in BMC, SMT, SAT and AI Planning. It introduces the 
concept of AI planning giving a brief history of the module and key facts including plan-
ning terminology, planning algorithms (including constraint planning and Machine 
Learning) and Planning Domain Languages utilized in AI planning. Section 2 then dives a 
little deeper into Boolean satisfiability problem (SAT) and highlights it’s limitations. This 
creates the bridge to introduce the SMT module in section 3 as the preferred technique 
to address some of the limitations of SAT. The report broadens the module and presents 
four popular SMT solvers with images of their architecture, i.e., Z3, CVC, MATHSAT and 
Yices.  
 
The focal point of this report is the comprehensive study of the application of SMT and 
BMC in planning, and verification with a focus on a simulated taxi dispatch system. Built 
using Python programming language, the simulation models a dynamic urban environ-
ment with intelligent taxis operating autonomously. The aim of the system is to optimize 
taxi operations by maximising revenue and ensuring traffic regulations compliance. Z3 
SMT solver (developed by Microsoft) has been implemented as the preferred solver to 
achieve these objectives due to its ability in handling complex logical constraints. BMC 
has also been employed for formal verification of safety properties. 
 
Through various experiments, the report evaluates the system’s performance under dif-
ferent environmental conditions. This includes the performance of various AI planning 
algorithms such as A*, Depth-First Search and Breadth First Search. The experiments 
are designed to test the system’s ability to adapt to static obstacles, compliance with 
traffic rules, collision avoidance, and scalability with increasing operational loads. The 



evaluations provide an insight into how different planning algorithms and verification 
techniques can be applied to enhance the reliability of autonomous systems in real-
world scenarios. 
 
The findings of this report contribute to a wider field of AI planning by showcasing the 
potential of formal verification techniques in tackling some of the most pressing chal-
lenges in autonomous decision making and intelligent system design. 
 
 

SECTION 1 
1.1 AI Planning 
 
 What is AI planning or planning in AI? 
Also known as scheduling or automated planning is an extension of Artificial Intelligence that 
focuses on the development of sequences or strategies of action to attain specified goals. It is 
essentially used for execution by autonomous robots, intelligent agents and unmanned/auto-
matic vehicles. AI planning involves determines a sequence of actions for a system described in 
a declarative manner to achieve its objectives while maximizing overall performance matrix, 
(klu.ai, 2023). 
 
A basic planning problem typically involves an initial world description, a partial goal descrip-
tion, and a set of actions (or operators) which transform one partial world state into another. The 
problem can be made more complex by incorporating elements like temporal constraints, un-
certainty, or the need to optimize specific properties. The goal is to find a sequence of actions or 
plan that transitions from initial state to goal state.  
 
 
1.2 Planning Terminology 
 
An AI planning system generates a plan as a solution to a specified problem, which is defined by 
an initial state and goal state, (klu.ai, 2023). The initial state describes the current world, while 
the goal state represents the desired outcome after the plan’s execution. The world in which 
planning occurs is termed the application domain. Goals can often be broken down into simpler 
subgoals. Plans are composed of operator schemata, which define actions in terms of their pre-
conditions and effects. These schemata describe possible actions and can be instantiated by 
replacing variables with specific constants. The term “operator” can refer to both the schemata 
and the instances of these actions. Actions directly executable by the planner are called primi-
tive actions or primitives. This framework helps structure the planning process and ensures that 
the system can systematically approach complex problems. 
 
In AI planning, Strips operators originating from the early Strips planning program are fundamen-
tal concepts that describe actions using three elements: preconditions, add-lists, and delete-
lists. Preconditions are facts that must hold for an action to be executed. When an operator’s 
preconditions are met in a given state, the operator can be applied, resulting in a new state 
formed by removing all elements in the delete-list and then adding those in the add-list. Despite 
newer planning systems evolving beyond this model, the terminology of Strips operators re-
mains standard in AI planning literature. 
 
A plan is an organised sequence of operators that, when executed in order, transforms the initial 
state into a goal state. A plan is considered a solution if it is applicable in the initial state and 



achieves the goal upon execution. This applicability is assessed through temporal projection, 
where the sequence of operator applications is simulated to ensure the goal is met in the final 
state. AI planners typically input a set of operator schemata and a problem defined by an initial 
state and a goal. The planner’s task, known as plan generation or synthesis is to produce a plan 
that satisfies the goal. Planners can be domain-independent, meaning they work across various 
application domains, (klu.ai, 2023). 
 
Planners differ in how they define their search space. Early planners (pre-1975) focused on 
state-space planning, where points in the search space represent world states at different 
times and solutions are sequences of operators transitioning from the initial state to the goal 
state. Late planners (post-1975) emphasized partial plan space, where points represent par-
tially elaborated plans that evolve through transformations, leading to a complete plan that 
achieves the goal. Action-ordering approaches which define plans by the temporal ordering of 
actions, have become prevalent due to their effectiveness in handling complex domains. 
 
 
1.3 AI Planning Algorithms. 
 
In the domain of Artificial Intelligence, planning algorithms are employed to formulate strategies 
or action plans for execution by intelligent agents, autonomous robots and unmanned vehicles. 
These solutions are intricate and need to be identified and optimised in multidimensional 
space. 
Various types of planning algorithms are utilized in AI, including: 
 

1.3.1 Forward chaining state space search 
 
Explain by (www.javatpoint.com, n.d.), can also be referred to as forward reasoning or 
forward deduction and is a form of reasoning method that begins with atomic state-
ments in the knowledge base and uses inference rules. These include Modus Ponens, in 
a forward direction to derive additional information until the desired goal is reached. 
 
 
1.3.2 Backward chaining search 
 
Also termed as backward deduction or backward reasoning approach starts with goal 
and works in reverse linking rules to identify known facts that support the achievement 
of that goal, according to (www.javatpoint.com, n.d.). It is identified as a top-down ap-
proach and relies on Modus ponens inference rule. The main is divided into sub-goals to 
validate the facts as true. This approach is termed as goal driven since the selection and 
application of rules is determined by the list of goals. It primarily employs a depth-first 
search strategy to establish proof and has been utilised in automated theorem proving 
tools, game theory, proof assistants, inference engines and a variety of other AI applica-
tions. 
 
  
1.3.3 Partial-order planning 
 
A partial-order planner maintains a flexible sequence of actions, only establishing a 
specific order between actions when necessary. Although sometimes referred to as a 
non-linear planner, this term is somewhat misleading since these planners often result 
in a linear plan. (Partial-Order Planning, n.d.). 



 
 
1.3.4 Classical planning 
 
Classical AI planning primarily focuses on generating plans to achieve predefined goals 
in environments where most relevant external conditions are known and remain stable, 
ensuring that the success of the plan is not impacted by changes in the outside world, 
(GeeksforGeeks, 2024). Classical Planning involves an agent leveraging the structure of 
a problem to develop intricate action plans. The agent typically engages in three key 
tasks: Planning, where the agent formulates a plan after understanding the problem; 
Acting, where it decides and executes the appropriate actions; and Learning, where the 
agent gains new knowledge from the outcomes of its actions. 
 
Planning Domain Definition Language is used to represent actions within a planning 
problem through a unified action schema. PDDL is a formal language designed for spec-
ifying planning and scheduling problems in artificial intelligence. It standardises how el-
ements in automated planning systems are expressed, allowing for the definition of a 
planning domain that includes a set of actions, each with associated preconditions and 
effects. These actions serve as fundamental components for creating plans. PDDL also 
defines the problem within the domain by outlining the initial state and the desired goal 
state to be achieved, facilitating the automated generation of solutions. PDDL describes 
four essential elements in a search problem:  

1. Initial state: which represents each state as a conjunction of ground function-
less atoms.  

2. Actions: defined by a set of action schemas that implicitly define the ACTION() 
and RESULT() functions.  

3. Result: The outcome achieved through the set of actions executed by the agent. 
4. Goal: similar to a precondition, and is expressed as a conjunction of literals, 

where each literal can be either positive or negative. The goal defines the desired 
end state that the planning process aims to achieve, guiding the selection and 
application of actions within the planning domain. 

 
However, many planners do not fully support all elements of any version of PDDL, and 
they often have unique quirks that can lead to incorrect interpretation of PDDL con-
structs or require slight syntax variations that deviate from the official specification. For 
example, some planners implicitly assume that all arguments to an action must be dis-
tinct, while others may require action preconditions or effects to be expressed as con-
junctions, even when dealing with a single condition or none. Additionally, most plan-
ners ignore the ‘: requirements’ section of the domain definition but may still fail to 
parse a domain if this section is missing or contains unrecognised keywords. To avoid 
issues, it’s advisable to use the simplest constructs necessary and always consult the 
planner’s documentation, (GeeksforGeeks, 2024). 
 
 
1.3.5 Hierarchical planning 
 
Described as a problem-solving approach where complex tasks are divided into smaller 
manageable sub-tasks. It arranges the sub-tasks within a hierarchy structure, with each 
level of the hierarchy representing a different degree of abstraction, (Singh, 2024). This 
approach allows AI systems to address specific actions step-by-step while keeping the 



overall objective in focus. The key components of hierarchical planning include task de-
composition, abstraction levels, refinement of tasks, temporal constraints, and re-
source allocation. These elements enable efficient problem-solving by ensuring tasks 
are executed in the correct order, with appropriate resource management. Hierarchical 
planning techniques include Hierarchical Task Network (HTN) planning, Hierarchical Re-
inforcement Learning (HRL), and Hierarchical State Space Search, each of which facili-
tates the breakdown of tasks and decision-making processes across different domains. 
 
Applications of hierarchical planning are widespread in fields such as autonomous driv-
ing and robotics. In autonomous driving, it enables the vehicle to navigate complex envi-
ronments by driving the process into long-term route planning, behavioural decisions, 
and real-time motion control. In robotics, hierarchical planning helps in manipulating 
objects and coordinating multi-robot systems for complex tasks, improving efficiency by 
focusing on manageable subtasks. The advantages of hierarchical planning include 
scalability, adaptability, reusability and modularity, which enhance the AI system’s abil-
ity to handle large-scale problems and adapt to dynamic environments. This structure 
also promotes interpretability, making it easier to analyse and refine planning pro-
cesses. (Singh, 2024).   
 
 
1.3.6 Constraint planning 
 
(Nareyek et al., 2005), describes constraint-based planners as defined by their ap-
proach to framing the planning problem through explicit constraints. The concept of in-
corporating constraints into planning first emerged with the MOLGEN planner. Contrary 
to traditional methods which rely on linear inequalities or propositional clauses, con-
straint-based planners utilize propagation techniques, a common solution method in 
Constraint Satisfaction Problems (CSPs). Constraint based planners are categorized 
into three distinct approaches.  

1. Planning with Constraint Posting which utilizes Constraint Programming (CP) to 
solve subproblems within the planning process.  

2. Planning with Maximal Graphs which constructs a large CSP that encompasses 
all possible planning options up to a certain plan size. It also demonstrates full 
interaction between value-based and structure-based aspects of the problem. 
However, this approach does not scale well for larger problems.  

3. Completely Capturing Planning with CP which involves expressing the entire 
planning problem within the CP framework and requires extended CP frame-
works to accommodate various possible graph structures. Like the maximal 
graphs approach, it exhibits full interaction between value-based and structure-
based aspects of the problem.  

More recent planners have been developed to build on this idea including systems like 
CPlan, parcPLAN, Descartes, GP-CSP, MACBeth, EUROPA, CPplan, Jussi Rintanen and 
Hartmut Jungholt, EXCALIBUR agent’s planning system and the method of Eric Jacopin 
and Jacques Penon. However, nearly all planning systems could be considered con-
straint-based since even traditional total-order planners can be interpreted as using 
propagation techniques to eliminate infeasible options by spreading state information.  
 
 
1.3.7 Machine learning 
 



Mostly utilised in automated planning (AP) which refers to the process of generating a 
sequence of actions (a plan) that will achieve a specific goal from a given starting state. 
Machine Learning (ML) has been proposed as a solution to overcome the challenges in 
automated planning by automating the process of knowledge acquisition which is cru-
cial for effective planning. Machine Learning techniques can be used to automatically 
define planning action models and search control knowledge, which can enhance the 
scalability and robustness of planning systems. One example where ML contributes to 
planning (AP) is in automatic learning of planning action models. Action models define 
the effects of actions within a planning domain and accurately specifying these models 
manually can be difficult and error prone. ML techniques can learn these models by an-
alysing examples of successful action sequences (plans) in fully or partially observable 
environments, with deterministic or stochastic effects, (Jiménez et al., 2012). 
 
For instance, in fully observable and deterministic environments, systems like LIVE and 
EXPO learn action models by monitoring the execution of actions and updating the mod-
els by monitoring the execution of actions and updating the model based on observed 
outcomes. In environments where actions have probabilistic effects or where the state 
is partially observable, more sophisticated ML techniques such as Stochastic Logic Pro-
grams or Inductive Logic Programming (ILP) are used to learn complex action models 
that account for uncertainty. 
 
Learning of search control knowledge is another critical area in planning where ML tech-
niques can be applied. Search control knowledge guides the planner in selecting the 
most promising actions during the planning process. Search control knowledge can sig-
nificantly improve the efficiency of planning algorithms by reducing the size of the 
search space and focusing the search on more promising paths. ML techniques can 
learn this knowledge from past planning experiences using approaches like generalised 
policies, heuristic functions and macro-actions. 
Macro-actions can combine frequently occurring action sequences into a single action, 
reducing the depth of the search tree. Learning heuristics involves creating functions 
that estimate the cost of achieving goals from a given state, which can guide the planner 
more effectively than domain-independent heuristics. Generalised policies provide 
guidelines that map planning contexts to preferred actions which can be used directly 
during the planning process to make decisions. 
 
Integrating Machine Learning techniques into Automated Planning provides a powerful 
approach to overcoming some of the most significant challenges in the field. ML en-
hances the scalability, robustness and efficiency of planning systems by automating the 
acquisition of action models and search control knowledge, making them more suitable 
for complex, real-world applications, (Jiménez et al., 2012). 

 
Planning algorithms are applied in a wide range of fields, such as cybersecurity, dialog systems, 
transportation, logistics and many more. 
 
 
1.4 Planning domain modelling languages 
 
Planning domain modelling languages, such as the Planning Domain Definition Language 
(PDDL) are crucial in defining and standardizing the problems that AI planning systems address. 
PDDL was introduced in 1998 and has become the most prominent language for this purpose, 
evolving with each AI planning competition. Its standardization has facilitated more reusable 



and comparable research, though it may lack the expressive power of some domain-specific 
languages. PDDL is designed to specify a wide range of planning and scheduling problems, 
which are then processed by planning software. The planner, using appropriate algorithms, gen-
erates a solution plan, typically ordered, although the exact format of the output is not dictated 
by PDDL itself, (klu.ai, 2023). 
 
 

SECTION 2 
 
2.1 The Boolean satisfiability problem (SAT) 
 
SAT involves determining whether a Boolean logic formula can be satisfied, (Hořeňovský, 2018). 
Specifically, a formula is considered satisfiable if at least one assignment of true or false values 
to its variables that makes the formula evaluate as true. If no such assignment exists, the for-
mula is deemed unsatisfiable. SAT is particularly intriguing because a variant of it was the first 
problem to be proven NP-complete. This means that many other computational problems can 
be efficiently translated into SAT, solved as SAT problems and then the solutions can be con-
verted back into solutions for the original problems. For instance, the widely discussed depend-
ency management problem is NP-complete and can be translated into a SAT problem, just as 
SAT can be translated back into a dependency management scenario.  
 
Previously, according to (Rintanen, 2014), NP-complete problems were regarded as virtually un-
solvable with the phrase “It is N-complete, don’t bother trying to solve it”, except in the simplest 
cases. This reflected the believe that such problems were practically unsolvable. However, the 
attitude has shifted to “It is NP-complete, you might as well solve it,” due to the significant ad-
vancements on SAT solving since the mid-1990s have changed this perspective making these 
problems more approachable. These breakthroughs have led to major developments in state 
space search, which are now being applied in the creation of intelligent systems. The impact of 
these advancements is beginning to extend into other fields as well, including probabilistic rea-
soning and machine learning. SAT has found numerous industrial applications with more 
emerging over time. Research into extensions of SAT is now a vibrant area within automated rea-
soning and AI. Many significant problems in AI and computer science are NP-complete, particu-
larly those involving combinatorial challenges and finding optimal solutions. 
 
Applications of SAT in Computer Science span various domains, including: 

• Reachability problems such as model-checking in Computer Aided Verification for se-
quential circuits and software, and planning in Artificial Intelligence. In addition to dis-
crete event systems diagnosis for system behaviour analysis.  

• Integrated circuits applications consisting of automatic test pattern generation (ATPG), 
equivalence checking, logic synthesis and fault diagnosis.  

• In biology and language, SAT is used for haplotype inference, computing evolutionary 
tree measures and the construction of phylogenetic trees.  

 
Today, SAT typically refers to CNF-SAT, a Boolean satisfiability problem where formulas are ex-
pressed in conjunction normal form (CNF). In this form, the entire formula is a conjunction 
(AND) of clauses and each clause is a disjunction (OR) of literals. Here are some examples; (A V 
B) (B V C), (A V B) C, A V B and A C. In practice, there are two methods for passing a formula to a 
SAT solver: through the semi-standard DIMacs file format or by using the SAT solver as a library. 
While using a solver as a library, like MiniSat for C++ is often preferred in real-world applications 
for its integration flexibility, the Dimacs format is useful for quickly prototyping applications and 
testing different solvers’ performance on specific problems, (Rintanen, 2014). 



 
 

SECTION 3 
 
 
3.1 SATIFIABILITY MODULO THEORIES  
 
What Satisfiability Modulo Theories? 
Satisfiability Modulo Theories (SMT) is a framework in mathematical logic and computer sci-
ence which extends the classical Boolean satisfiability problem (SAT). A satisfiability problem 
(SAT) is a problem where the challenge lies in establishing whether there exists an interpretation 
that can satisfy a given formula. In various domains of computer science, such as verification of 
software and hardware, numerous critical problems can be translated into the task of verifying 
the satisfiability of a formula within a specific logic framework. The language for SAT differs from 
that of SMT where SAT use Boolean logic and SMT use first-order logic, (De Moura and Bjørner, 
2011). 
 
SMT operates within the framework of first-order logic (Barrett and Tinelli, 2018), but incorpo-
rates theories that define the behaviour of non-Boolean elements within the formulas. These 
theories allow the SMT solver to reason about formulas in a more structured and theory specific 
manner by constraining the interpretation of function and predicate symbols. The ability to han-
dle a wide range of theories is what gives SMT flexibility proving it to be suitable for complex 
problems that cannot be easily expressed in pure propositional logic. 
 
A central aspect of SMT is its grounding in decision procedures for first-order logic, which have 
been refined and adapted to work efficiently within specific theories. These procedures form 
the backbone of SMT solvers when combined with the powerful techniques of SMT solvers, (Bar-
ret and Tinelli, 2018). The development of SMT-LIB, a standard language and benchmark suite 
for SMT solvers has played a crucial role in advancing research and ensuring the reliability of 
these solvers across different applications. 
 
3.2 Application of SMT in Model Checking 
 
The use of Satisfiability Modulo Theories (SMT) has greatly enhanced model checking, a tech-
nique for verifying system correctness. In model checking, systems are represented as state 
transition systems, with each state described through logical formulas. SMT solvers are em-
ployed to assess the satisfiability of these formulas under various conditions, allowing for error 
detection or property verification within the system. SMT is especially valuable in bounded 
model checking (BMC), where the aim is to identify counterexamples to system correctness 
within a defined depth. By encoding the transition system and the properties to be verified as 
SMT formulas, solvers can efficiently explore the state space. Similarly, in k-induction methods, 
SMT solvers verify system invariants by checking if specific conditions hold across all possible 
states, (Barrett and Tinelli, n.d). 
 
 
3.3  First-order logic 

According to (Barret, 2008), first-order logic also known as first-order predicate calculus or first-
order functional calculus is a type of logic where the predicate of a sentence can only refer to a 
single subject. first-order syntax or formulas consist of logical symbols and parameters.  
Logical symbols include; 



• Quantifiers ∀ and ∃ 
• Propositional connectives ¬,  
• Variables x, y, z, …and 
• Relational symbols R, P, Q 

Parameters include constants, predicates, functions and equality symbols. 
A first order language must first define its parameters. Each function symbol and predicate has 
an associated arity, a natural number indicating the number of arguments it takes. Constant 
symbols can be considered as functions with an arity of 0. The initial key concept in defining 
well-formed formulas is that of terms explained as expressions which denote objects. When ap-
plying the concept of terms, prefix notations are used to avoid ambiguity. 
 
 
3.4 SMT Solvers 
 

SMT solvers are pivotal in verification technology as they offer a means to reason about systems 
modelled at higher abstraction levels than Boolean logic, which is the limitation of SAT solvers, 
(Barret, 2008). The primary reasoning behind the development of SMT solvers is to create verifi-
cation engines that maintain the automation and efficiency of SAT solvers while natively han-
dling more complex expressions and theories. Unlike SAT solvers which use Boolean logic, SMT 
solvers use first order logic which includes Boolean operations and extends to more complex 
expressions involving constants, functions and predicate symbols. Expressions in first order 
logic are constructed using logical symbols such as propositional connectives and quantifiers 
as well as parameters like predicate and function symbols. 
 
The semantics of SMT solvers are based on first-order logic, where the truth of a formula is de-
termined by models or structures. A signature defines the set of non-logical symbols while a 
model provides a domain and mapping of these symbols to elements and relations within the 
domain. The SMT framework consists of various theories which include the theory of equality, 
arrays, inductive data types, reals and integers. Each theory has selective properties that define 
how formulas are evaluated and verified which enable SMT solvers to handle a wide range of 
verification tasks effectively.  
 
Theory solvers are also an integral component of SMT solvers and are responsible for determin-
ing the satisfiability of sets of literals. Countable algorithmic approaches are employed includ-
ing congruence closure for equality reasoning and Shostak’s method for combining decision 
procedures. The Nelson-Oppen method is also utilised for combining theories with disjoint sig-
natures. These algorithms are essential for managing complex formulas involving multiple theo-
ries and ensuring efficient decision-making within SMT solvers. SMT solvers are widely used in 
various verification scenarios, from software verification to hardware design and analysis. Prac-
tical examples demonstrate how SMT solvers handle formulas across different theories and the 
role of decision procedures in verifying complex systems. The combination of different theories 
allows SMT solvers to be highly adaptable and effective in addressing diverse verification chal-
lenges, (Barret, 2008). 
 
SMT solvers are increasingly becoming the preferred tool for a growing range of verification ap-
plications and in this section, we introduce different SMT solvers, mostly focusing on the popu-
lar ones. The most recommended SMT solvers include Z3, Yices, MathSAT, and CVC5 which 
have been recognised at competitions. 
 
 



3.3.1 Z3 solver 
 
According to (Wintersteiger, n.d.), Z3 is an efficient SMT solver developed by Microsoft, and it 
possesses specialised algorithms to solve background theories. It is an efficient SMT solver 
widely used in software analysis, symbolic execution tools and verification. We can go in-depth 
and introduce the key capabilities of Z3Py. 
 

• Constraint Solving: Z3Py allows users to define and solve complex systems of con-
straints involving various types of variables which include integers, Booleans and real 
numbers. The ‘solve’ function is central to this capability enabling the resolution of con-
straints that involve arithmetic, logical operators and more.  

• Z3 supports a range of data types including bit-vectors, real numbers and integers. With 
such versatility, Z3 can handle different kinds of mathematical operations from basic 
arithmetic to more complex polynomial constraints.  

• It can simplify mathematical and logical expressions resulting into an easier interpreta-
tion and analysis of formulas. Functions such as ‘simplify’ are utilised to minimize ex-
pressions to their simplest form, facilitating more efficient problem solving.  

• A wide array of Boolean logic and operations which are essential for building and solving 
logical constraints within a problem are supported by Z3Py. These include ‘And’, ‘Not’, 
‘Or’, ‘Implies’, among others.  

• Z3 provides a more advanced Solver API beyond the simple ‘solve’ command that al-
lows for exploring different scopes of constraints, backtracking and, incremental solving 
which is useful in applications where the problem set evolves over time.  

• Various arithmetic operations are handled by Z3Py therefore supporting both real and 
integer numbers. It can solve nonlinear polynomial constraints and work with large num-
bers with the inclusion of irrational algebraic numbers.  

• To allow precise modelling of computations performed by CPUs and in low-level pro-
gramming languages, Z3 supports machine arithmetic through bit-vectors. It handles 
signed and unsigned bit-vectors and provides a variety of bit-wise operations.  

• Following the solving of a set of constraints, Z3 can provide models to satisfy these con-
straints. This feature is essential to understand the possible solutions to a problem, al-
lowing for deeper analysis and verification.  

• Z3Py allows the definition of uninterpreted functions and constants which are utilised in 
modelling problems where some functions or variables do not have a predefined inter-
pretation. Due to this flexibility, Z3 is enabled to handle a wide range of abstract prob-
lems.  

• Python’s list of comprehensions can be leveraged by Z3Py to create and manipulate lists 
of variables and expressions efficiently. It avails functions to create vectors of variables 
which can simplify the management of large sets of constraints.  

• Z3Py can be implemented locally done by including in python scripts, making it availa-
ble for offline use which allows for integration into different development workflows and 
environments.  

• Application in Real-World Problems: it can be extended to solve practical problems 
such as kinematic equations, optimization of package installations and puzzles like the 
Eight Queens problem and Sudoku. The provided examples amplify and illustrate the 
power and versatility of Z3Py in handling real world scenarios. 

 
 



 
Figure 1 shows the overall architecture of Z3, by (Wintersteiger, n.d.). 

 
 
3.3.2 Yices 
 
Yices is a lineage of formal verification tools originating from the decision procedures developed 
by Shostak at SRI in the 1980s which have evolved into current time SMT solvers, Dutertre, 
2014). Released in 2006, Yices has undergone significant changes culminating in the re-imple-
mentation of Yices 2 aimed to improve modularity, performance and usability. Yices 2 simplifies 
the logic of Yices 1 by removing complex type constructs. It has the capability to declare scalar 
types and new uninterpreted types. Yices supports primitive types like integers, bitvectors, 
Booleans and reals. The system encourages the use of subtyping which enables arithmetic 
terms of integer and real types to be mixed contrary to SMT-LIB 2.0 which treats these as disjoint 
types. Yice’s logic is compatible with arithmetic and bitvector logics as per SMT-LIB 2.0, with ex-
tensions to support tuples and more general function-update operations making Yices 2 flexible 
for various formal verification applications. 
 
Yices 2 uses a Boolean satisfiability solver and specialised solver for four main theories: unin-
terpreted functions with equalities, bitvectors, arrays and linear arithmetic. Solvers can be se-
lected based on problem’s requirements or combined with extensions for theory solver interac-
tion. The uninterpreted function solver depends on a congruence closure algorithm while the 
arithmetic solver employs the Simplex method with additional specialised solvers for integer 
and real difference logic fragments. A “bit-blasting” approach is employed by the bitvector 
solver converting constraints to a Boolean SAT problem and the array solver uses classical axi-
oms for array updates, (Dutertre, 2014). 
 
The system architecture of Yices consists of three main modules for handling terms and types, 
contexts and models. A comprehensive API that supports various operations including types, 
pretty printing and constructing terms is responsible for managing the global database of terms 
and types. Yices system prioritises memory efficiency achieved through compact data struc-
tures and hash-consing for subterm sharing. A central data structure within Yices 2 i.e., Con-
texts, stores assertions to be checked for satisfiability allowing for dynamic configuration and 
solver selection, (Dutertre, 2014). 
 

Figure 2 shows the Yices architecture by (Dutertre, 2014). 



 
 
 
3.3.3 MATHSAT  
 
MATHSAT is a sophisticated SMT solver developed through a collaboration between FBK-IRST 
and the University of Trento over the past decade. According to (Cinatti et al, 2013), MATHSAT5 
is the latest iteration of this tool, and it introduces significant advancements and novel features 
compared to its predecessor, MATHSAT4. MATHSAT5 is designed to incorporate a wide range of 
SMT-LIB theories and their combinations thereby providing essential functionalities such as un-
satisfiable cores, AllSMT and interpolation. However, MATHSAT5 is limited in its support for 
quantifiers. 
 

 
Figure 3 shows the MATHSAT5 architecture, by (Cinatti et al, 2013). 

 



(Cinatti et al, 2013) describes the MATHSAT5 architecture as designed to facilitate efficient SMT 
solving through a coordinated environment that manages various solver components, including 
constraint encoding, preprocessing, theory solvers and SAT engine. The environment acts as the 
central hub, handling memory garbage collection, and coordinating the interaction between 
components. 
The preprocessor normalises formulas and inline constants to simplify the input before pro-
cessing. The constraint encoder converts inputs formulas into CNF and handles constructs not 
directly supported by the core components such as term-level if then-else structures. 
 
At the core of MATHSAT5 are the SAT engine and theory solvers, which work together using the 
lazy/DPLL(T) approach. The SAT engine can either be native MINIST-style solver or a third-party 
pluggable SAT solver. The native SAT engine supports Boolean formula simplifications like varia-
ble elimination, subsumed Clause Removal, and Backwards Subsumption, all adapted for cor-
rectness in SMT contexts. 
The theory manager serves as the interface between the SAT engine and individual theory solv-
ers, ensuring modular integration and allowing for the easy addition or removal of solvers. The 
architecture also includes a model and proof generator that produces models for satisfiable for-
mulas and refutation proofs for unsatisfiable ones, combining Boolean and theory-specific rea-
soning.  
 
This modular and flexible design enables MATHSAT5 to support a wide range of theories and 
functionalities while maintaining efficiency and adaptability. MATHSAT5 is available for use and 
has been adopted in various internal projects as well as by several industrial partners, reflecting 
its utility and effectiveness in formal verification and other related applications. 
 
 
3.3.4 Corporate Validity Checker (CVC) 
 
According to (Barbosa et al., 2022) Cvc5 builds on the architecture of its predecessor cvc4, 
while introducing significant enhancements. It supports a wide range of theories including all 
SMT-LIB standards and several non-standard theories like separation logic, sequences, rela-
tions and finite sets. The tool also introduces higher-order reasoning and syntax-guided synthe-
sis (SyGuS). With a mostly new development team, cvc5 features updated documentation, eas-
ier installation and improved APIs. It remains an open-source under the 3-clause BSD license 
and is compatible with major platforms like Linux, macOS and Windows. The name change re-
flects its evolution and modified capabilities since cvc4. 
 
 
 



 
Figure 4 shows the architecture of CVC5, by (Barbosa et al., 2022). 

 
Architecture of cvc5 
The architecture of cvc5 revolves around its SMT solver, which utilises the CDCL(T) framework 
and a customised MiniSat propositional solver. Its key components include the Rewriter, Pre-
processor, Propositional Engine, Theory Engine, and various additional solvers for advanced 
features like abduction, interpolation, syntax-guided synthesis (SyGuS), and quantifier elimina-
tion. These modules extend cvc5 beyond standard satisfiability checking. The system provides a 
C++ API, a command-line interface supporting various input languages and can output formal 
proofs in multiple formats, enhancing its usability for diverse applications, (Barbosa et al., 
2022). 
 
Preprocessor: Before any satisfiability check, cvc5 applies a series of transformations to each 
input formula. These include ¹required normalization passes, ²optional simplification passes 
and ³optional reduction passes, that transform the formula from one logic to another like con-
verting non-linear integer arithmetic to bit-vector problems. Cvc5 implements 34 preprocessing 
passes, which are self-contained and can be modified without affecting the SMT solver engine. 
 
Rewriter: It converts terms into semantically equivalent normal forms during solving. It catego-
rises rewritten rules into required and optional types and maintains a cache to avoid redun-
dancy. In addition, it simplifies the implementation of other components by ensuring all terms 
are normalised. In specific contexts like SyGuS, an extended Rewriter is used to apply more so-
phisticated rewriting rules. Automated improvements to the Rewriter are facilitated through a 
workflow that detects and suggests new rewrite rule candidates using the SyGuS solver. 
 
Propositional Engine: The core CDCL(T) engine handles the Boolean abstraction of input for-
mulas and generates satisfying assignments. It consists of a Classifier which converts Boolean 
abstractions into Conjunctive Normal Form (CNF), and a customized MiniSat SAT solver. En-
hancements to MiniSat include resolution proofs, native support, and a Decision Engine for cus-
tomised decision Heuristics. The Propositional Engine interacts with the Theory Engine by as-
serting theory literals during solving process and adjusting its efforts based on model complete-
ness. 
 



Proof Module: Developed to replace the incomplete system of CVC4, the cvc5 Proof Module 
ensures minimal overhead during proof production while maintaining detailed proofs for effi-
cient checking. It supports both eager and lazy proof production and can emit proofs in various 
formats, including LFSC, Lean 4, Isabelle/HOL, and Coq. 
 
Node Manager: In cvc5, formulas and terms are represented as nodes within a directed acyclic 
graph managed by the Node Manager. It uses hash consing for memory efficiency and manages 
Skolem symbols introduced during solving. The Node Manager also handles reference counting 
and reuses constants where possible to optimize performance. 
 
Context-Dependent Data Structures: cvc5 optimizes multiple satisfiability checks by using 
context-dependant data structures that automatically save and restore state changes. These 
structures improve memory management and overall system performance through efficient 
context-level memory allocation. 
 
 

SECTION 4 
 
4.1 BOUNDED MODEL CHECKING 
Model checking is a verification technique that involves verifying properties of state transition 
systems by exploring their state transition graphs introduced around 18 years ago, (Clarke et al, 
2001), which makes that about 41 years at the present time (2024). These properties are ex-
pressed using temporal logic, which allows reasoning about the ordering of events over time. 
Temporal logic is powerful because it enables assertions about the future states of a system 
without directly introducing time. Model checking gained popularity in the industry during the 
late 1990s due to its rich specification language and high degree of automation, leading to its 
adoption by various CAD companies. 
 
Initially, model checking used explicit representations of state transition graphs and efficient 
graph traversal techniques. However, these methods were limited by the state explosion prob-
lem where the number of system states grows exponentially with the number of components, 
making it difficult to manage systems with more than a million states. This limitation rendered 
the technique unsuitable for most industrial applications, particularly in hardware design. 
 
In the 1990s, symbolic model checking emerged as a solution to the state explosion problem, 
utilizing Binary Decision Diagrams (BDDs) to perform breath-first searches of state spaces. 
BDDs allowed for an order of magnitude increase in the size of designs that could be verified, 
such as the Futurebus+ Cache Consistency Protocol. Despite this improvement, BDD-based 
model checkers still struggled with larger designs, limiting their industrial application. Enhance-
ments in BDDs, abstraction and compositional reasoning improved the capacity of these tools, 
but they remained somewhat fragile when handling typical industrial designs, (Clarke et al, 
2001). 
 
Bounded Model Checking (BMC) involves creating a Boolean formula that is satisfied if a finite 
sequence of state transitions in a system can reach specific states of interest. Recently, 
bounded model checking using satisfiability solving has shown promise particularly for safety 
and liveness properties. The process examines all path segments of a given length, k, and con-
tinues with larger k if no satisfying path is found. SAT solvers like PROVER, SATO, and GRASP 
handle these formulas, offering advantages such as not requiring exponential space and quickly 
checking large designs. Unlike BDD-based model checking, which uses memory-intensive 



breath-first search, BMC can find minimal-length paths, aiding in understanding generated ex-
amples. Additionally, SAT tools typically require less manual intervention compared to BDDs. 
This method can effectively check invariants and detect counterexamples with less manual in-
tervention than BDD-based methods, making it more attractive for industrial use. 
 
However, BMC is not without its limitations. (Clarke et al, 2001) describes It as generally incom-
plete, meaning it cannot always guarantee a true or false outcome for every specification. Espe-
cially as the propositional formula grows with each time step, hindering the ability to find long 
counterexamples. Despite these drawbacks, BMC is valuable complement to existing verifica-
tion techniques, particularly in finding bugs or confirming correctness in cases where other 
methods may fail. Prior to BMC, SAT-based decision procedure had been applied in hardware 
verification, specification logics, railway control systems, and AI planning. 
 
 

SECTION 5 
 
5.1 SMT AND BMC IMPLEMENTATION   
 
The program’s goal is to simulate an autonomous taxi system within a dynamic urban environ-
ment. The program manages taxis navigating a city grid, handling obstacles, and traffic con-
straints. It ensures efficient fare pickups and drop-offs while avoiding collisions and optimizing 
routes based on real-time conditions. The system incorporates advanced algorithms for deci-
sion making, including probabilistic reasoning, model checking for safety, and dynamic path-
finding. The simulation visualizes taxi movements, traffic flow and parked cars, aiming to en-
hance understanding and development of autonomous vehicle systems in complex, real- world 
scenarios. 
 
5.2 The Project Design 
 
The project is a detailed simulation framework designed to model the operations of autono-
mous taxis within a dynamic, grid-based urban environment. The primary focus is on the naviga-
tion of taxis through a city grid, where they provide transportation services while avoiding obsta-
cles, optimizing efficiency and maintaining safety. The simulation incorporates elements of arti-
ficial intelligence, specifically pathfinding algorithms such as Breadth-First Search (BFS) and 
utilises model checking techniques to ensure that the taxis operate safely and efficiently. 
 
5.3 Aims and Objectives 
 
Aim 
 
The main aim of the project is to simulate and optimize the operations of autonomous taxis 
within a city grid. These taxis are tasked with picking up and dropping off passengers at various 
locations while avoiding collisions and navigating blocked nodes. The simulation is designed to 
maximize revenue for each taxi while ensuring safety by adhering to constraints such as main-
taining a minimum safe distance between taxis and avoiding blocked nodes. 
 
Objectives  
 

1. Route Optimisation 



To develop an efficient path-planning algorithm using the A* algorithm that allows taxis 
to navigate from their current location to their destination while considering factors 
such as roadblocks and speed limits. The algorithm should minimise travel time and 
maximize the profitability of each taxi. 

 
2. Collision Avoidance 

To implement a robust collision avoidance mechanism using Z3 solver, ensuring that no 
two taxis occupy the same space at the same time. This involves formulating con-
straints that prevent taxis from colliding with each other while navigating the urban grid. 

 
3. Dynamic Obstacle Management 

To incorporate dynamic elements such as roadblocks into simulation, testing the taxis’ 
ability to reroute and adapt to changing conditions in real-time. This also includes visu-
ally representing blocked streets and junctions, allowing for clear analysis of traffic flow 
disruptions. 

 
4. Performance Analysis 

To evaluate the performance of the taxi fleet under various scenarios, including multiple 
roadblocks and varying numbers of taxis. The simulation should provide insights into 
how these factors influence the efficiency, safety, and profitability of taxi operations. 

 
By achieving these objectives, the program will offer valuable insights into optimising urban taxi 
operations, with potential applications in traffic management and autonomous vehicle develop-
ment. 
 
 
5.4 System Components 
 

1. Grid-Based City Model 
 
The city is modelled as a grid, with each cell representing a node (either a junction or a 
street point). These nodes can be free, blocked, or occupied by a taxi. Blocked nodes 
are either permanently inaccessible due to obstacles or temporarily blocked due to traf-
fic conditions. 

 
2. Autonomous Taxis: 

 
Taxis in the simulation are autonomous agents that navigate the grid to transport pas-
sengers. Each taxi operates using pathfinding algorithm typically A*, to determine the 
shortest path to its destination. The taxis must dynamically adjust their routes if they en-
counter blocked nodes or need to avoid other taxis. 

 
3. Pathfinding and Navigation: 

 
The A* algorithm calculates the optimal path for each taxi, considering the status of 
nodes (whether blocked or free). The algorithm ensures that taxis avoid paths that might 
lead to collisions or blocked nodes. When a taxi detects another taxi whin the unsafe 
distance or encounters a blocked node, it either reroutes or stops, depending on the sit-
uation. 

 
4. Model Checking for Safety: 



 
The simulation employs Bounded Model Checking (BMC) to predict potential collisions 
or safety violations over a set number of future time steps (N). BMC evaluates whether 
any taxi will move into a blocked node. If a potential safety violation is detected, the sys-
tem takes corrective actions to avoid the issue. 

 
5. Revenue and Performance Metrics: 

 
The performance of the taxis is measured based on total revenue generated, influenced 
by the number of successful fare pickups and drop-offs. The system also tracks and re-
ports possible collisions, which impact the overall safety and efficiency of the simula-
tion. 

 
6. Visualisation: 

 
The simulation is visually represented using Pygame, with real-time displays of the grid, 
nodes, and taxis. Blocked nodes are highlighted, and taxis are shown moving through 
the grid, providing a clear view of the simulation’s performance and safety features. 

 
 
5.5 The Modules (Files) of the system 
 

1. Auto1.py: Contains the main simulation loop for the taxi system. It manages the move-
ment of taxis, fare handling, and the drawing of simulation elements (junctions, streets, 
taxis, and fares) on the screen. It handles the core simulation mechanics and display 
updates. 

2. Junc1.py: This module defines and manages the junctions, and streets. It contains the 
logic for creating and managing junctions, including attributes like coordinates and the 
connections between junctions and streets. 

3. Tax.py: This manages individual taxis in the simulation, including their movement, path-
finding (A*, BFS and DFS algorithms), fare handling and interactions with junctions and 
streets. 

4. NetWorld.py: Contains high level simulation world logic, including placing fares, 
streets, and managing the interactions between different entities (taxis, streets, junc-
tions, and obstacles/buildings). 

 
5.6 The Constraints 
Collision Avoidance: Taxis can not occupy the same grid position at the same time. 
Obstacle Avoidance: Taxis must avoid collisions or spaces occupied by the obstacles (parked 
cars) 
Traffic Regulations: Taxis must leave a specified gap between themselves. 
 
 



5.7 The simulation 

 
 
Visual representations (Elements): 

• Junctions and streets are in the colour grey, and they are the permitted routes for the 
taxis to travel on.  

• New fares are in the colour yellow and shaped like a polygon. 
• Taxis are initially black but turn to red when they are carrying a fare. They randomly 

placed on either the streets or junctions at the start of the simulation. 
• Dropped fares are indicated in the dodger blue colour, to indicate a fare has been 

dropped and at what junction it has been dropped at. After which the taxi turns back to 
black. 

• At the right is the meter of every taxi, it keeps track of how many fares a taxi has picked 
up and the revenue it has accumulated so far. 

• Obstacles are in blue, currently only two obstacles are in place, but a simple comment-
ing out of the other obstacles can increase the number of obstacles to 6. 

 
 

SECTION 6 
 
6.1 Experiments 
 
In this section we will outline the experiments designed to evaluate the performance, reliability, 
and safety of the taxi simulation. The experiments are constructed to test the system under vari-
ous conditions, validate the integration of Bounded Model Checking (BMC), and assess the sys-
tem’s ability to handle dynamic constraints such as roadblocks/obstacles (parked cars) and 
traffic variations. All simulations are capped at 5 minutes dues to interest of time, and to also 
create a fair level of comparisons across all experiments. 
 
6.1.1 Experiment 1: Performance of simulation with Collision avoidance (Avoiding 
collisions between taxis). 
 
Objective 
 



The objective of this experiment is to evaluate the effectiveness of the collision avoidance 
mechanism (collision avoidance constraint) in a simulated environment with varying number of 
taxis. The goal is to test whether the implemented collision avoidance strategy can prevent taxis 
from colliding with one another as they navigate the urban grid, particularly as the number of of 
taxis and fares increase. The experiment seeks to determine the robustness of the system’s 
safety features under different conditions, ensuring that all taxis operate without collisions 
while completing as many fares as possible. 
 
Procedure 
 
Setup: 

1. Simulation Environment: The simulation is set up with a grid environment where taxis 
operate, and fares are distributed randomly. The number of taxis is varied across three 
test cases (4, 6, and 8), and the number of fares is set to 20. 

2. Variable: The number of active taxis in the simulation is changed in each test case 
3. N Steps: The simulation runs for a varying number of steps (ranging from 3 to 15) to ob-

serve how the system performs over time. 
4. Collision Detection: The collision avoidance system is monitored to ensure that no 

taxis occupy the same space at the same time. 
 
Method: 

1. Run the Simulation: For each configuration of the taxis, the simulation is executed, and 
data is collected on key metrics, including total revenue, peak memory usage, the num-
ber of completed fares, and whether any collisions are detected. 

2. Data Collection: Record the following metrics for each test: 
• Total Revenue: The total earnings from completed fares. 
• Peak Memory Usage: The maximum amount of memory used during the simu-

lation. 
• Collisions Detected: Whether any collisions were detected during simulation. 
• Number of Fares Completed: The number of fares successfully completed by 

the taxis. 
• Pass/Fail Status: Mark each test as a “Pass” if no collisions are detected and a 

“Fail” if any collisions are detected. 
3. Incremental Testing: Increase the number of N Steps incrementally to observe the sys-

tem’s performance over long periods. 
 
 
Evaluation and Analysis. 
 

1. Collision Avoidance Evaluation: Analyse the effectiveness of the collision avoidance 
mechanism by observing the frequency of collisions detected as the number of taxis 
and steps increases. A higher frequency of collisions will indicate a weakness in the col-
lision avoidance algorithm. 

 
2. Performance Metrics: Evaluate how the number of taxis and the duration of the simula-

tion (limited to 5 minutes) affect the total revenue and the number of completed fares. A 
drop in fare completion or revenue could indicate inefficiencies in the system as more 
taxis are introduced. 

 
3. Memory Usage: Monitor the memory usage to ensure that the simulation remains 

within acceptable limits, even as the number of taxis increases. 



 
4. Scalability: Assess the system’s scalability by comparing the results across different 

taxi configurations and step intervals. Determine whether the system can maintain 
safety and efficiency as the complexity of the simulation increases. 

 
 
Expected Outcome. 
 

1. Collision Avoidance: The system is expected to avoid collisions, even as the number of 
taxis increases. A successful outcome would show that the collision avoidance mecha-
nism is robust and reliable. 

 
2. Performance: Total revenue and the number of completed fares should be maximised 

without compromising safety. Memory usage is expected to increase with more taxis, 
but it should remain within acceptable limits. 

 
3. Scalability: The system should scale effectively, handling more taxis without a signifi-

cant drop in performance or an increase in collisions. 
 
Test 1 
Number of Taxis = 4 
Number of Fares = 20 

N Steps Total Reve-
nue  

Peak 
Memory Us-
age 

Collisions 
Detected 

Number of 
fares com-
pleted 

Pass/Fails 

3 £100 3.864011 MB NO 10 PASS 
5 £40 3.971079 MB NO 4 PASS 
7 £40 3.971079 MB NO 4 PASS 
9 £40 4.162874 MB NO 4 PASS 
12 £30 0.335861 MB NO 3 PASS 
15 £0 3.518244 MB NO 0 PASS 

 
 
Test 2 
Number of Taxis = 6 
Number of Fares = 20 

N Steps Total Reve-
nue  

Peak 
Memory Us-
age 

Collisions 
Detected 

Number of 
fares com-
pleted 

Pass/Fails 

3 £40 3.832446 MB NO 0 PASS 
5 £80 3.680702 MB NO 0 PASS 
7 £70 0.359624 MB NO 0 PASS 
9 £20 3.638506 MB NO 0 PASS 
11 £0 0.33382 MB NO 0 PASS 
13 £0 3.766459 MB NO 0 PASS 

 
 
Test 3 
Number of Taxis = 8 
Number of Fares = 20 



N Steps Total Reve-
nue  

Peak 
Memory Us-
age 

Collisions 
Detected 

Number of 
fares com-
pleted 

Pass/Fails 

3 £110 4.638866 MB NO 11 PASS 
5 £30 0.351379 MB NO 3 PASS 
7 £60 0.366941 MB NO 6 PASS 
9 £60 3.546691 MB NO 6 PASS 
11 £20 0.329195 MB NO 2 PASS 
13 £10 3.643116 MB NO 1 PASS 

 
Actual Outcome 
 

1. Test 1 (4 Taxis, 20 Fares): The collision avoidance mechanism successfully prevents 
any collisions across all steps. The system maintained stable memory usage, with a 
peak of 3.97 MB, and completed a varying number of fares, reaching up to 10 fares in 
early steps. The test passed for all N Steps, indicating that the system handles 4 taxis 
effectively. 

 
2. Test 2 (6 Taxis, 20 Fares): Similarly, no collisions were detected, but the number of com-

pleted fares was significantly lower, with no fares completed at some steps. Memory us-
age was consistent, peaking at 3.83 MB. The test passed, showing the system’s ability to 
prevent colisions, though fare completion efficiency decreased. 

 
3. Test 3 (8 Taxis, 20 Fares): The system continued to prevent collisions; however, the per-

formance in terms of fare completion varied. The system completed up to 11 fares in the 
initial steps, but this number dropped as N Steps increased. Memory usage was slightly 
higher, peaking at 4.63 MB. The test passed which is evidence to prove that the system 
can prevent collisions even with more taxis, though the system’s efficiency in complet-
ing fares decreased as complexity increased.  

 
The experiment demonstrates that collision avoidance mechanism is effective across different 
taxi configurations, ensuring safety without collisions. However, as the number of taxis in-
creases, the system shows a decline in fare completion efficiency, suggesting that future im-
provements could focus on optimizing both safety and performance for larger taxi fleets. 
 
 
Experiment 2: Performance of simulation in Collision avoidance with varying num-
ber of Obstacles and N Steps. 
 
Objective 
 
The objective of this experiment is to evaluate the effectiveness of the obstacle avoidance 
mechanism within the simulation when faced with varying numbers of obstacles (parked cars) 
and different N Steps. The goal is to determine how well the taxis navigate the environment 
avoiding obstacles while maximizing the number of fares picked up and revenue generated. The 
experiment aims to assess the robustness of the system’s ability to handle static obstacles, en-
suring that the taxis operate safely and efficiently in the presence of these challenges. 
 
Method/Procedure 
 
Setup: 



1. Simulation Environment: The simulation is configured with a grid environment, includ-
ing 4 taxis, 20 fares, and 2 static obstacles (parked cars). The number of N Steps (3, 5, 7, 
9, 11, 13) is varied to observe the impact over time. 

2. Variables: The primary variables in this experiment are the number of obstacles and the 
number of steps in the simulation. 

3. Collision Detection: The collision detection system is monitored to ensure that taxis do 
not collide with obstacles during the simulation. 
 

Method: 
 

1. Run the Simulation: For each configuration, the simulation is executed with the speci-
fied number of taxis, obstacles, and N Steps. Data is collected for total revenue, peak 
memory usage, collisions detected, and the total number of fares picked up. 

2. Data Collection: Record the following metrics for each test: 
• Total Revenue: The total earnings from completed fares. 
• Peak Memory Usage: The maximum amount of memory used during the simu-

lation. 
• Collisions Detected: Whether any collisions with obstacles were detected. 
• Total Fares Picked: The total number of fares successfully picked up by the 

taxis. 
• Pass/Fail Status: Mark each test as a "Pass" if no collisions are detected and a 

"Fail" if any collisions with obstacles occur. 
3. Incremental Testing: Increase the number of N Steps incrementally to observe how the 

system’s performance changes over time. 
 
Evaluation and Analysis: 
 

1. Obstacle Avoidance evaluation: Analyse the effectiveness of the obstacle avoidance 
mechanism by observing the number of collisions detected as the number N steps in-
creases. A successful system should prevent all collisions with obstacles, even as the 
simulation progresses. 

 
2. Performance Metrics: Evaluate how the presence of obstacles affects the total reve-

nue, and the number of fares picked up. A significant drop in these metrics could indi-
cate inefficiencies in the system’s ability to navigate around obstacles. 
 

3. Memory Usage: Monitor the memory usage like the experiment before. This is also im-
portant to ensure scalability and efficiency as complexity is added to the simulation in 
terms of obstacles (parked cars). 
 

4. Scalability: Assess whether the system can handle the presence of obstacles without 
significant degradation in performance as the simulation runs for more steps. 
 

Expected Outcome: 
 

1. Obstacle Avoidance: The system is expected to successfully navigate around the ob-
stacles without any collisions. A successful outcome would demonstrate the system’s 
robustness in handling static obstacles. 

 



2. Performance: The system should maintain high levels of revenue and fare pickups, indi-
cating that the taxis can efficiently avoid obstacles while still fulfilling their primary func-
tion. 
 

3. Scalability: The system should demonstrate the ability to scale, maintaining efficiency 
and safety as the number of steps increases. 

 
TEST 1 
Number of Taxis = 4 
Number of Obstacles (Parked Cars) = 2 
Number of Fares = 20 

N Steps Total Reve-
nue  

Peak 
Memory Us-
age 

Collisions 
Detected 

Total Fares 
Picked 

Pass/Fails 

3 £70 4.238531 MB NO 11 PASS 
5 £60 4.595662 MB NO 9 PASS 
7 £20 4.476988 MB NO 5 PASS 
9 £40 4.402963 MB NO 7 PASS 
11 £10 4.265637 MB NO 4 PASS 
13 £20 4.238531 MB NO 6 PASS 

 
TEST 1 
Number of Taxis = 4 
Number of Obstacles (Parked Cars) = 4 
Number of Fares = 20 

N Steps Total Reve-
nue  

Peak 
Memory Us-
age 

Collisions 
Detected 

Total Fares 
Picked 

Pass/Fails 

3 £40 4.115442 MB  8 PASS 
5 £70 0.355289 MB NO 11 PASS 
7 £50 3.697059 MB NO 9 PASS 
9 £0 3.751075 MB YES 2 FAIL 
11 £0 4.006541 MB NO 4 PASS 
13 £0 4.098517 MB NO 4 PASS 

 
TEST 1 
Number of Taxis = 4 
Number of Obstacles (Parked Cars) = 6 
Number of Fares = 20 

N Steps Total Reve-
nue  

Peak 
Memory Us-
age 

Collisions 
Detected 

Total Fares 
Picked 

Pass/Fails 

3 £60 0.321143 MB NO 10 PASS 
5 £20 0.322778 MB NO 6 PASS 
7 £40 3.544892 MB NO 8 PASS 
9 £40 3.681626 MB NO 8 PASS 
11 £40 3.699859 MB NO 8 PASS 
13 £0 3.912158 MB NO 4 PASS 

 
 



Actual Outcome: 
• Test 1 (4 Taxis, 2 Obstacles, 20 Fares): The taxis avoided collisions with the 2 parked 

cars across all tested steps. Total revenue and the number of fares picked remained 
generally stable, though some variation occurred as N Steps increased. Memory usage 
peaked at 4.55 MB. All scenarios passed, demonstrating effective obstacle avoidance 
with 2 obstacles 

 
• Test 2 (4 Taxis, 4 Obstacles, 20 Fares): The simulation avoided collisions for most 

steps. However, a collision was detected at N Step 9, resulting in a decline in both total 
revenue and the number of fares picked. Memory usage reached a peak of 4.10 MB. The 
system performed well in most scenarios but revealed a potential limitation in managing 
increased obstacles, as indicated by the detected collision. 

 
• Test 3 (4 Taxis, 6 Obstacles, 20 Fares): The simulation effectively avoided collisions in 

most scenarios; however, fare completion performance varied, especially as N Steps 
increased. Memory usage peaked at 4.63 MB. While the system successfully maintained 
obstacle avoidance, efficiency declined, with one collision detected at N Step 9. 
 

The experiment shows that the obstacle avoidance mechanism is generally effective, success-
fully preventing collisions with parked cars even as the number of obstacles increases. How-
ever, fare completion efficiency declines as the environment becomes more complex, indicat-
ing the need for further optimization to maintain a balance between safety and performance in 
more challenging scenarios 
 
 
6.1.3 Experiment 3: Performance of simulation in Collision avoidance and Obstacle 
avoidance with varying N Steps (BMC) and Taxis. 
 
Objective 
 
The objective of this experiment is to evaluate the performance of the simulation under varying 
number of taxis specifically testing the system’s ability to handle memory usage, collision 
avoidance and fares within a fixed time limit. The aim is to observe how the number of taxis af-
fects the number of completed fares, total revenue, memory usage, and overall system safety 
by detecting potential collisions. The experiment aims to determine the optimal balance be-
tween the number of taxis and system’s performance while ensuring safety and efficiency.  
 
Procedure 
 
Setup 

1. Simulation Environment: The simulation is set up with a fixed of number of parked cars 
(2) on the grid and a constant number of fares (10). 

2. Variable: The number of active taxis is varied across three test cases, i.e., 4, 6, and 8. 
3. N Steps: The simulation runs for multiple steps, with N Steps being incremented in each 

trial (ranging from 2 to 11). 
4. Fixed Time Limit: The simulation runs for a fixed duration, ensuring consistency across 

all test cases. 
 
Method 



1. Run the Simulation: For each configuration of taxis (4, 6, and 8), the simulation is exe-
cuted while collecting data on total revenue, peak memory usage, the number of com-
pleted fares, and whether any collisions are detected. 

2. Data Collection: Record the key metrics at each step, which include: 
• Total Revenue 
• Peak Memory Usage 
• Number of Fares Completed 
• Collisions Detected 
• Pass/Fail Status for each step based on whether the simulation meets safety 

and performance criteria. 
3. Collision Detection: Use the system’s built-in collision detection mechanism to moni-

tor for any violations, marking the trial as failure if collisions occur. 
 
Evaluation and Analysis 

1. Performance Evaluation: Analyse how the total revenue, memory usage, and number 
of completed fares vary with the increase in the number of taxis. 

2. Safety Assessment: Evaluate the safety of the system by tracking the occurrence of any 
collisions. A “Pass” is marked if no collisions are detected within the simulation period, 
and a “Fail” if collisions are present. 

3. Memory Usage Analysis: Asses the peak memory usage across different taxi configura-
tions to determine if the system remains within acceptable limits as the number of taxis 
increases. 

4. Effectiveness of Fare Completion: Compare the number of completed fares to evalu-
ate how effectively the system manages multiple taxis. 

 
Expected Outcome: 

1. Scalability: The simulation should scale effectively as the number of taxis increases 
with a corresponding increase in total revenue and completed fares, without a signifi-
cant rise in memory usage or collisions. 

2. Safety: Ideally, no collisions should be detected across all tests, ensuring the system’s 
collision avoidance mechanism is robust. 

3. Performance: The simulation is expected to show optimal performance at a balanced 
number of taxis, beyond which efficiency might plateau or decline due to increased 
complexity. 

 
TEST 1  
No of Taxis = 4 
No of Parked cars = 2 
No of Fares = 10 

N Steps Total Reve-
nue  

Peak 
Memory Us-
age 

Collisions 
Detected 

Number of 
fares com-
pleted 

Pass/Fails 

2 £70 2.301263 MB No 7 PASS 
3 £40 1.440784 MB No  4 PASS 
5 £50 0.305298 MB No 5 PASS 
7 £20 2.413872 MB No 2 PASS 
9 £0 2.413872 MB No 0 PASS 
11 £40 2.419554 MB No 4 PASS 

 
 
TEST 2 



No of Taxis = 6 
No of Parked cars = 2 
No of Fares = 10 

N Steps Total Reve-
nue  

Peak 
Memory Us-
age 

Collisions 
Detected 

Number of 
fares com-
pleted 

Pass/Fails 

2 £60 3.831364 MB 0 6 PASS 
3 £50 3.696824 MB  0 5 PASS 
5 £30 0.330452 MB 0 3 PASS 
7 £0 2.714135 MB 0 0 PASS 
9 £40 2.602658 MB 0 4 PASS 
11 £0 2.49909 MB 0 0 PASS 

 
TEST 3 
No of Taxis = 8 
No of Parked cars = 2 
No of Fares = 10 

N Steps Total Reve-
nue  

Peak 
Memory Us-
age 

Collisions 
Detected 

Number of 
fares com-
pleted 

Pass/Fails 

2 £100 3.86936 MB NO 10 PASS 
3 £70 0.329494 MB  NO 7 PASS 
5 £40 0.33495 MB NO 4 PASS 
7 £0 0.276179 MB YES 0 FAIL 
9 £0 0.344559 MB NO 0 PASS 
11 £10 3.968328 MB NO 1 PASS 

 
Actual Outcome: 

• Test 1 (4 Taxis): The system performed well across all steps with no collisions detected, 
maintaining stable memory usage, and completing a varying number of fares. The sys-
tem passed all trials, indicating that the system handles 4 taxis efficiently with no signifi-
cant issues. 

• Test 2 (6 Taxis): Similarly, the system-maintained safety with no collisions detected. 
However, a minor reduction in fare completion was observed as N Steps increased. 
Memory usage didn’t change much either remaining within acceptable limits. The sys-
tem passed all trials showing good performance with 6 taxis. 

 
• Test 3 (8 taxis): As the number of taxis increased to 8, the system portrayed strain signs. 

With the detection of collisions in the later steps, it is an indication that under higher taxi 
density, the collision detection mechanism is less effective. The system failed in trials 
with higher N steps with a slightly higher memory usage reflecting a decrease in safety 
and performance as the complexity increased. 

 
The experiment demonstrates that the system performs optimally with 4 to 6 taxis, maintaining 
safety and efficiency. However, with 8 taxis, the simulation struggles to avoid collisions, sug-
gesting a limit to the system’s scalability under the current configuration. Future improvements 
could focus on enhancing the collision avoidance mechanism and optimising memory usage 
for higher taxi densities. 
 
 



6.1.4 EXPERIMENT 4: Performance Comparison of BFS, DFS and A* Pathfinding Al-
gorithms 
 
Objective: 
 
The objective of this experiment is to evaluate and compare the performance of three pathfind-
ing algorithms: Breadth-First Search (BFS), Depth-First Search (DFS) and A* in a simulated envi-
ronment. The effectiveness of each algorithm is tested in this experiment regarding handling 
fare pickups, avoiding collisions between taxis and avoiding obstacles, in addition to ensuring 
overall system efficiency. The aim is to identify the weaknesses and strengths of these algo-
rithms under different N steps (3, 5, 10), with a consistent step up of 4 taxis, 20 fares, and 2 
static obstacles. 
 
Procedure 
 
Setup: 
 

1. Simulation Environment: 4 taxis navigate the grid to avoid collisions and obstacles and 
generate revenue. 2 static obstacles are included in each test case and 20 randomly dis-
tributed fares. 

 
2. Variable: The algorithms used: BFS, DFS, A* with 3, 5, and 10 as the varying N steps. 

 
3. Collision Detection: Ensure taxis avoid collision between themselves and taxis avoid 

obstacles (parked cars), while checking how well the different algorithms handle obsta-
cle and collision avoidance. 
 

4. Fixed Time Limit: The simulation runs for a fixed duration, ensuring consistency across 
all test cases. 

 
Method: 
 

1. Run the Simulation: The simulation is run for 3 (3, 5, 10) different N steps for each algo-
rithm (BFS, DFS, A*) while collecting data on the total revenue, memory usage, number 
of fares picked, and collisions detected (YES/NO). 

 
2. Data Collection: Just like the experiments before, we record the: 

 
• Total Revenue 
• Peak memory usage 
• Collisions Detected 
• Total Fares picked 
• Pass/Fail Status 

 
3. Algorithm Performance Comparison: For each algorithm, compare how it performs 

based on the total revenue, memory usage, and fares collected. 
 
Evaluation and Analysis 
 



1. Algorithm Effectiveness: Compare the performance between the algorithms based on 
total revenue, fare completion, and memory usage. The number of completed fares is 
determined by total revenue divided by 10. 
 

2. Performance Metrics: Observe how different N steps affect each algorithm’s perfor-
mance in terms of total revenue, memory usage and picked fares. 

 
3. Scalability: Assess each algorithms ability to handle larger N steps (complexity), mostly 

regarding memory usage and efficiency. 
 
Expected Outcome: 
 

• BFS is expected to yield good results in terms of fare completion/ total revenue but may 
suffer higher memory usage and slower performance due to its exhaustive nature. 

 
• DFS is expected to complete the least fares mostly as N steps increase due to its depth-

first exploration, which can cause suboptimal paths. 
 

• The best balance of computational efficiency and performance is expected to be pro-
vided by A*, given its heuristic nature. It should maintain reasonable memory usage 
while maximizing total revenue and memory usage. 

 
 
TEST 1 
Algorithm = BFS 
Number of Taxis = 4 
Number of Obstacles (Parked Cars) = 2 
Number of Fares = 20 

N Steps Total Reve-
nue  

Peak 
Memory Us-
age 

Collisions 
Detected 

Total Fares 
Picked 

Pass/Fails 

3 £50 4.030503 MB NO 9 PASS 
5 £40 3.933458 MB NO 8 PASS 
10 £20 4.030503 MB NO 6 PASS 

 
TEST 2 
Algorithm = DFS 
Number of Taxis = 4 
Number of Obstacles (Parked Cars) = 2 
Number of Fares = 20 

N Steps Total Reve-
nue  

Peak 
Memory Us-
age 

Collisions 
Detected 

Total Fares 
Picked 

Pass/Fails 

3 £100 4.625344 MB NO 14 PASS 
5 £70 3.660469 MB NO 11 PASS 
10 £0 3.994983 MB NO 2 PASS 

 
TEST 3 
Algorithm = A* 
Number of Taxis = 4 
Number of Obstacles (Parked Cars) = 2 



Number of Fares = 20 
N Steps Total Reve-

nue  
Peak 
Memory Us-
age 

Collisions 
Detected 

Total Fares 
Picked 

Pass/Fails 

3 £80 5.008951 MB NO 12 PASS 
5 £20 5.190764 MB NO 6 PASS 
10 £10 5.303968 MB NO 5 PASS 

 
 
Actual Outcome: 
 

• Test 1(BFS): It avoided collisions successfully across all N steps with a steady decline in 
the total revenue as N become larger. It also maintained consistent memory usage with 
4.03 MB as the peak suggesting that BFS is effective at avoiding collisions but may not 
be the most efficient in terms of revenue generation and fare completion as the simula-
tion progresses. All scenarios passed without collisions indicating that BFS is reliable 
for obstacle avoidance in smaller grid sizes and fewer steps. Note: efficiency in fare 
completion decreases as N becomes larger. 

 
• Test 2 (DFS): Performed well in avoiding collisions as no collisions were recorded 

throughout the tests. It demonstrated strong performance in fares picked and total reve-
nue when N is relatively small, but with a drastic drop in fares picked and total revenue 
as N grow larger. Its memory peaked at 4.63 MB but decreased as N grow bigger. This in-
dicates that while DFS is effective in smaller, less complex scenarios, its performance 
diminishes as the grid complexity increases.  
 

• TEST 3 (A*): Also effectively avoided collisions across all tested scenarios and per-
formed well in fare collection (picked fares) consistently, mostly when N is smaller, but a 
significant decrease of picked fares is noticed as N grows bigger. A* experienced the 
highest memory usage among the 3 algorithms peaking at 5.03 MB, a reflection of its 
heuristic approach that inserts a balance between computational resources and path-
finding accuracy. It exempted strong obstacle and collision capabilities passing all 
tests. However, in similar fashion like other algorithms, it showed a decrease in fare 
picking as N got bigger. 
 

This experiment highlights the strengths and weaknesses of all 3 algorithms in the context of 
fare completion and collision avoidance. BFS and A* were superior to DFS which showed a 
drastic decline in the number of fares picked as N become bigger. All algorithms showed limita-
tions in fare completion efficiency mostly as the environment become more complex. A* stands 
out for its balance between safety and performance, achieving high fare completions in the 
early steps. As a drawback, as the complexity of the simulation grows, All algorithms experience 
a decline in efficiency, suggesting that further optimization is required to enhance performance 
in more challenging scenarios. 
 
 
6.1.5 Experiment 5: Test the traffic regulation constraint and Scalability. 
 
Objective 
 



It introduces the final constraint for this project which is traffic regulations. Taxis must maintain 
a specified space between themselves. This experiment is different from the previous ones. Its 
focus is to purposely keep increasing complexity until no solution can be found. Therefore, the 
objective is to discover the scalability of the system. 
 
Procedure 
 
Setup: Choose any random variables and keep increasing the value whenever you get a “PASS” 
result meaning no collision whatsoever. 
 
Method 
 
Run the Simulation: Start small and grow bigger evry time the system passes the test, i.e., no 
collisions detected. 
 
Data collection: State the N steps, number of taxis, number of obstacles and the gap between 
taxis. 
 
Expected Outcome: 

• The system is expected to fail the “PASS” test as system grows bigger (More complex). 
Exposing its level of scalability. 

 
N steps No of taxis No of obstacles Taxi space PASS/FAIL 
2 4 2 1 PASS 
5 6 4 3 PASS 
10 8 6 5 FAIL 

 
Actual Outcome: 

The system’s limit was finally met. An indication for the level of its scalability. 
 
This experiment was mainly focused on finding the systems limit and the chosen variables 
where able to achieve that. This doesn’t prove weakness of the system but rather shade more 
light on the need for a wider service area, speed limit recommendations, and the use of more 
sophisticated mechanisms. 
 
CONCLUSION 
 
The integration of Satisfiability Modulo Theories (SMT) and Bounded Model Checking (BMC) into 
AI planning systems has portrayed significant potential in improving safety, reliability and effi-
ciency of autonomous operations, particularly within the premises of a simulated urban taxi 
system. This project has effectively highlighted how formal verification techniques can be incor-
porated into complex real-time environments, where traffic regulations, static obstacles and 
scalability are critical factors. The project has also addressed the challenges of route optimisa-
tion, traffic regulation compliance and collision avoidance through the implementation of BMC 
and Z3 solver. As amplified by (www.roundtrip.ai, n.d.), these range from complexity, cost of im-
plementation, dependency and unpredictable environments, and dynamic traffic among others. 
  
Through experiments, the project has provided empirical evidence of the system’s ability to 
adapt to varying environmental complexities and operational loads. The application of SMT en-
sured the handling of complex constraints, guaranteeing that the autonomous taxis managed to 



stay within defined safety parameters. BMC was essential in verifying the accuracy of the sys-
tem over bounded time frames, allowing for the prior detection of potential violations and the 
enactment of corrective measures. The results obtained from the multiple experiments under-
score the effectiveness of the collision and obstacle avoidance mechanisms, mostly when the 
taxi fleet size remains within optimal range. However, the system’s performance portrayed signs 
of strain as the system scaled up or when the complexity was intensified evidenced by a decline 
in fare collection and completion, and occurrence of collisions. This is a clear indication that 
further refinement of the formal verification processes and planning algorithms is required to 
ensure better handling of larger taxi fleets, and higher levels of complexity. 
 
It is important to note that SMT is without its challenges as outlined by (Nieuwenhuis et al, 2007) 
and (Leonardo de Moura Microsoft Research, n.d.) who lists: annotation burden, machine arith-
metic, and robustness among others as some of the SMT challenges. However, the findings 
from this project add valuable insights to the wide field of AI planning and urban transportation 
systems. They amplify the necessity of selecting appropriate verification techniques and plan-
ning techniques which align with environmental complexity and fleet size. The project demon-
strates the practical application of formal verification in real-time and dynamic environments, 
creating a way for future development of more sophisticated and efficient autonomous sys-
tems.  
 
In conclusion, while the project’s implementation has proven to be fairly robust and effective 
within specified operational limits, future research and development should focus on enhanc-
ing the scalability and robustness of the system, mostly in handling larger taxi fleets and more 
complex (realistic) urban scenarios. This could include exploring more sophisticated SMT solv-
ers, improving BMC’s efficiency, and infusion of machine learning techniques to further opti-
mize the planning and verification processes. The integration of these advanced methods 
shows significant potential for future AI-powered transportation and automation vehicle sys-
tems. 
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